Towards Acquiring Case Indexing Taxonomies From Text
نویسندگان
چکیده
Taxonomic case-based reasoning is a conversational casebased reasoning methodology that employs feature subsumption taxonomies for incremental case retrieval. Although this approach has several benefits over standard retrieval approaches, methods for automatically acquiring these taxonomies from text documents do not exist, which limits its widespread implementation. To accelerate and simplify feature acquisition and case indexing, we introduce FACIT, a domain independent framework that combines deep natural language processing techniques and generative lexicons to semi-automatically acquire case indexing taxonomies from text documents. FACIT employs a novel method to generate a logical form representation of text, and uses it to automatically extract and organize features. In contrast to standard information extraction approaches, FACIT’s knowledge extraction approach should be more accurate and robust to syntactic variations in text sources due to its use of logical forms. We detail FACIT and its implementation status.
منابع مشابه
Learning Feature Taxonomies for Case Indexing
Taxonomic case retrieval systems significantly outperform standard conversational case retrieval systems. However, their feature taxonomies, which are the principal reason for their superior performance, must be manually developed. This is a laborious and error prone process. In an earlier paper, we proposed a framework for automatically acquiring features and organizing them into taxonomies to...
متن کاملTaxonomic Semantic Indexing for Textual Case-Based Reasoning
Case-Based Reasoning (CBR) solves problems by reusing past problemsolving experiences maintained in a casebase. The key CBR knowledge container therefore is its casebase. However there are further containers such as similarity, reuse and revision knowledge that are also crucial. Automated acquisition approaches are particularly attractive to discover knowledge for such containers. Majority of r...
متن کاملA Comparing between the impacts of text based indexing and folksonomy on ranking of images search via Google search engine
Background and Aim: The purpose of this study was to compare the impact of text based indexing and folksonomy in image retrieval via Google search engine. Methods: This study used experimental method. The sample is 30 images extracted from the book “Gray anatomy”. The research was carried out in 4 stages; in the first stage, images were uploaded to an “Instagram” account so the images are tagge...
متن کاملTaxaMiner: an experimentation framework for automated taxonomy bootstrapping
Hierarchical taxonomies and thesauri are frequently used by content management systems for indexing, search and categorization. They are also being viewed as rudimentary ontologies for the emerging Semantic Web infrastructure. However, to date, development of taxonomies and thesauri are human intensive processes, requiring huge resources in terms of cost and time. It is critical that approaches...
متن کاملتأملاتی بر نمایه سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه
Purpose: This paper presents various image indexing techniques and discusses their advantages and limitations. Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...
متن کامل